Markscheme

November 2020

Mathematical studies

Standard level

Paper 1

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse suivante : https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Paper 1 Markscheme
Instructions to Examiners
Notes: If in doubt about these instructions or any other marking issues, contact your team leader for clarification.

The number of marks for each question is 6 .

1 Abbreviations

The markscheme may make use of the following abbreviations:
M Marks awarded for Method
A Marks awarded for an Answer or for Accuracy
C Marks awarded for Correct answers (irrespective of working shown)
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning
ft Marks that can be awarded as follow through from previous results in the question

Method of Marking

(a) All marking must be done in RM Assessor using the mathematical studies annotations and in accordance with the current document for guidance in e-marking Mathematical Studies SL. It is essential that you read this document before you start marking.
(b) If the candidate has full marks on a question use the appropriate \boldsymbol{C} annotations, if the candidate has made an attempt but scores zero marks use C0. If there is no attempt use the No response button. If a candidate does not score full or zero marks then full annotations MUST be shown.
(c) In this paper, if the correct answer is seen on the answer line the maximum mark is awarded. There is no need to check the working! Award \boldsymbol{C} marks and move on.
(d) If the answer does not appear on the answer line, but the correct answer is seen in the working box with no subsequent working, award the maximum mark.
(e) If the answer is wrong, marks should be awarded for the working according to the markscheme.
(f) Working crossed out by the candidate should not be awarded any marks. Where candidates have written two solutions to a question, only the first solution should be marked.
(g) A correct answer in the working box transcribed inaccurately to the answer line can receive full marks.
(h) If correct working results in a correct answer in the working box but then further working is developed, indicating a lack of mathematical understanding full marks should not be awarded. In most such cases it will be a single final answer mark that is lost, however, a statement on the answer line should always be taken as the candidate's final decision on the answer as long as it is unambiguous. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal.

Example:

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final (A1) (ignore the further working)
2.	$(x-6)(x+1)$	$x=6$ and -1	Do not award the final (A1) (see next example)

Example: Factorise $x^{2}-5 x-6$

Markscheme	Candidates' Scripts		Marking
$(x-6)(x+1)$	(A1)(A1)	(i)	Answer line: $(x+6)(x+1)$
(A0)(A1)			
	(ii)Working box: $(x-6)(x+1)$ followed by $x=6$ and -1, or just $6,-1$ in either working box or on answer line.	(A1)	
			(A0)

Follow through (ft) Marks

Errors made at any step of a solution affect all working that follows. To limit the severity of the penalty, follow through (ft) marks can be awarded. Markschemes will indicate where it is appropriate to apply follow through in a question with '(ft)'.
(a) Follow through applies only from one part of a question to a subsequent part of the question. Follow through does not apply within the same part.
(b) If an answer resulting from follow through is extremely unrealistic (eg, negative distances or incorrect by large order of magnitude) then the final \boldsymbol{A} mark should not be awarded.
(c) If a question is transformed by an error into a different, much simpler question then follow through may not apply.
(d) To award follow through marks for a question part, there must be working present for that part. An isolated follow through answer, without working is regarded as incorrect and receives no marks even if it is approximately correct.
(e) The exception to the above would be in a question which is testing the candidate's use of the GDC, where working will not be expected. The markscheme will clearly indicate where this applies.
(f) Inadvertent use of radians will be penalised the first time it occurs. The markscheme will give clear instructions to ensure that only one mark per paper can be lost for the use of radians.

Example: Finding angles and lengths using trigonometry

Using the Markscheme

(a) \boldsymbol{A} marks are dependent on the preceding \boldsymbol{M} mark being awarded, it is not possible to award (M0)(A1). Once an (M0) has been awarded, all subsequent \boldsymbol{A} marks are lost in that part of the question, even if calculations are performed correctly, until the next \boldsymbol{M} mark.
The only exception will be for an answer where the accuracy is specified in the question - see section 5.
(b) \boldsymbol{A} marks are dependent on the \boldsymbol{R} mark being awarded, it is not possible to award (A1)(R0) Hence the (A1) is not awarded for a correct answer if no reason or the wrong reason is given.
(c) Alternative methods may not always be included. Thus, if an answer is wrong then the working must be carefully analysed in order that marks are awarded for a different method consistent with the markscheme.
Where alternative methods for complete questions are included in the markscheme, they are indicated by 'OR' etc.
(d) Unless the question specifies otherwise, accept equivalent forms. For example: $\frac{\sin \theta}{\cos \theta}$ for $\tan \theta$. On the markscheme, these equivalent numerical or algebraic forms will sometimes be written in brackets after the required answer.
Where numerical answers are required as the final answer to a part of a question in the markscheme, the scheme will show, in order:
the 3 significant figure answer worked through from full calculator display;
the exact value (for example $\frac{2}{3}$ if applicable) ;
the full calculator display in the form $2.83163 \ldots$ as in the example above.
Where answers are given to 3 significant figures and are then used in subsequent parts of the question leading to a different 3 significant figure answer, these solutions will also be given.
(e) As this is an international examination, all valid alternative forms of notation should be accepted. Some examples of these are:

Decimal points: $1.7 ; 1^{\prime} 7 ; 1 \cdot 7 ; 1,7$.
Decimal numbers less than 1 may be written with or without a leading zero: 0.49 or .49 .
Different descriptions of an interval: $3<x<5 ;(3,5) ;$] 3,5 [.
Different forms of notation for set properties (e.g. complement): $A^{\prime} ; \bar{A} ; A^{c} ; U-A ;(A ; U \backslash A$.
Different forms of logic notation: $\neg p ; p^{\prime} ; \tilde{p} ; \bar{p} ; \sim p ;-p$.

$$
p \Rightarrow q ; p \rightarrow q ; q \Leftarrow p
$$

Significance level may be written as α.
(f) Discretionary marks: There will be very rare occasions where the markscheme does not cover the work seen. In such cases the annotation DM should be used to indicate where an examiner has used discretion. Discretion should be used sparingly and if there is doubt an exception should be raised through RM Assessor to the team leader.

As with previous sessions there will be no whole paper penalty marks for accuracy AP, financial accuracy FP and units UP. Instead these skills will be assessed in particular questions and the marks applied according to the rules given in sections 5, 6 and 7 below.

5 Accuracy of Answers

Incorrect accuracy should be penalized once only in each question according to the rules below.
Unless otherwise stated in the question, all numerical answers should be given exactly or correct to 3 significant figures.

1. If the candidate's answer is seen to 4 sf or greater and would round to the required 3 sf answer, then award (A1) and ignore subsequent rounding.
Note: The unrounded answer may appear in either the working box or on the final answer line.
2. If the candidate's unrounded answer is not seen then award (A1) if the answer given is correctly rounded to 2 or more significant figures, otherwise (AO).
Note: If the candidate's unrounded answer is not seen and the answer is given correct to 1 sf (correct or not), the answer will be considered wrong and will not count as incorrect accuracy. If this answer is used in subsequent parts, then working must be shown for further marks to be awarded.
3. If a correct 2 sf answer is used in subsequent parts, then working must be shown for further marks to be awarded. (This treatment is the same as for following through from an incorrect answer.)

These 3 points (see numbers in superscript) have been summarized in the table below and illustrated in the examples which follow.

	If candidates final answer is given ...					
	Exact or to 4 or more sf (and would round to the correct 3 sf)	Correct to 3 sf	Incorrect to $3 \mathbf{s f}$	Correct to 2 sf 3	Incorrect to 2 sf	Correct or incorrect to 1 sf
Unrounded answer seen ${ }^{1}$	Award the final (A1) irrespective of correct or incorrect rounding					
Unrounded answer not seen ${ }^{2}$	(A1)	(A1)	(AO)	(A1)	(AO)	(AO)
Treatment of subsequent parts	As per MS		Treat as follow through, only if working is seen. ${ }^{3}$			

Examples:

Markscheme		Candidates' Scripts			Marking
9.43 (9.43398...)	(A1)	(i) $9.43398 \ldots$ is seen in the working box followed by 9; 9.4; 9.43; 9.434 etc. (correctly rounded)			(A1)
		(ii)	$9.43398 \ldots$ is seen in the working box followed by 9.433; 9.44 etc. (incorrectly rounded)		(A1)
		(iii)	9.4		(A1)
		(iv)	9		(AO) (correct to 1 sf)
		(v)	9.3	(incor	(AO) rounded to 2 sf)
		(vi)	9.44	(incor	(AO) rounded to 3 sf)

Markscheme		Candidates' Scripts			Marking
7.44 (7.43798...)	(A1)	(i) $7.43798 \ldots$ is seen in the working box followed by 7; 7.4; 7.44; 7.438 etc. (correctly rounded)			(A1)
		(ii)	$7.43798 \ldots$ is seen in the working box followed by 7.437; 7.43 etc. (incorrectly rounded)		(A1)
		(iii)	7.4		(A1)
		(iv)	7		(AO) (correct to 1 sf)
		(v)	7.5	(incor	(AO) rounded to 2 sf)
		(vi)	7.43	(incor	(AO) rounded to 3 sf)

Example: $\quad \mathrm{ABC}$ is a right angled triangle with angle $\mathrm{ABC}=90^{\circ}, \mathrm{AC}=32 \mathrm{~cm}$ and $\mathrm{AB}=30 \mathrm{~cm}$. Find (a) the length of BC , (b) The area of triangle ABC .

Rounding of an exact answer to 3 significant figures should be accepted if performed correctly. Exact answers such as $\frac{1}{4}$ can be written as decimals to fewer than 3 significant figures if the result is still exact. Reduction of a fraction to its lowest terms is not essential, however where an answer simplifies to an integer this is expected. Fractions that include a decimal in the numerator and/or the denominator are acceptable for showing correct substitution, but not as a final answer.

Ratios of π and answers taking the form of square roots of integers or any rational power of an integer (e.g. $\sqrt{13}, 2^{\frac{2}{3}}, \sqrt[4]{5}$,) may be accepted as exact answers. All other powers (eg, of non-integers) and values of transcendental functions such as sine and cosine must be evaluated.

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. In all such cases the final mark is not awarded if the rounding does not follow the instructions given in the question. A mark for specified accuracy can be regarded as a (ft) mark regardless of an immediately preceding (M0).

Certain answers obtained from the GDC are worth 2 marks and working will not be seen. In these cases only one mark should be lost for accuracy.
eg, Chi-squared, correlation coefficient, mean

Markscheme	Candidates' Scripts		Marking
Chi-squared	(a) 7.7	(A2)	
$7.68(7.67543 \ldots)$	(A2)	(b) 7.67	(A1)
	(c) 7.6	(A1)	
	(d) 8	(A0)	
	(e) 7	(A0)	
	(e) 7.66	(A0)	

Regression line

Maximum/minimum/points of intersection

6 Level of accuracy in finance questions

The accuracy level required for answers will be specified in all questions involving money. This will usually be either whole units or two decimal places. The first answer not given to the specified level of accuracy will not be awarded the final \boldsymbol{A} mark. The markscheme will give clear instructions to ensure that only one mark per paper can be lost for incorrect accuracy in a financial question.

Example: A financial question demands accuracy correct to 2 dp .

Units in answers

There will be specific questions for which the units are required and this will be indicated clearly in the markscheme. The first correct answer with no units or incorrect units will not be awarded the final \boldsymbol{A} mark. The markscheme will give clear instructions to ensure that only one or two marks per paper can be lost for lack of units or incorrect units.
The units are considered only when the numerical answer is awarded (A1) under the accuracy rules given in Section 5.

Markscheme			Candidates' Scripts			Marking
(a)	$37000 \mathrm{~m}^{2}$	(A1)	(a)	$36000 \mathrm{~m}^{2}$	(Incorr	(AO) not consid
(b)	$3200 \mathrm{~m}^{3}$	(A1)	(b)	$3200 \mathrm{~m}^{2}$		(AO) (Incorrect u

If no method is shown and the answer is correct but with incorrect or missing units award the C marks with a one mark penalty.

8 Graphic Display Calculators

Candidates will often obtain solutions directly from their calculators. They must use mathematical notation, not calculator notation. No method marks can be awarded for incorrect answers supported only by calculator notation. The comment "I used my GDC" cannot receive a method mark.

1. (a) 8.97×10^{18} (EUR) $\left(8.973 \times 10^{18}\right)$
(A1)(A1)
(C2)

Note: Award (A1) for 8.97 (8.973), (A1) for $\times 10^{18}$. Award (A1)(AO) for 8.97 E 18 . Award (AO)(AO) for answers of the type 8973×10^{15}.
(b) $\frac{4 \times \pi \times 113^{3}}{3}$
(M1)
Note: Award (M1) for correct substitution in volume of sphere formula.

$$
6040000\left(\mathrm{~km}^{3}\right)\left(6.04 \times 10^{6}, \frac{5771588 \pi}{3}, 6043992.82\right)
$$

(A1)
(C2)
[2 marks]
(c) $\left|\frac{6043992.82-6.074 \times 10^{6}}{6.074 \times 10^{6}}\right| \times 100$
(M1)

Note: Award (M1) for their correct substitution into the percentage error formula (accept a consistent absence of " $\times 10^{6}$ " from all terms).
0.494 (\%) (0.494026...(\%)) (A1)(ft)

Note: Follow through from their answer to part (b). If the final answer is negative, award at most (M1)(A0).
2. (a) (i) the cost of each (large cheese) pizza / a pizza / one pizza / per pizza (A1)

Note: Award (AO) for "the cost of (large cheese) pizzas". Do not accept "the minimum cost of a pizza".
(ii) the (fixed) delivery cost (A1)
(C2)
[2 marks]
(b) 2
(A1)
(C1)
[1 mark]
(c) $450=34.50 n+8.50$

Note: Award (M1) for equating the cost equation to 450 (may be stated as an inequality).
12.8 (12.7971...)

12
Note: The final answer must be an integer.
The final (A1)(ft) is awarded for rounding their answer down to a whole number, provided their unrounded answer is seen.
3. (a) $400 \leq w<500$
(A1)
(C1)

Note: Accept alternative notation [400,500) or [400,500[. Do not accept "400-500".

Note: Award (A1)(A0) for an answer of 116 (116.459...).
(c)

(A2)(A1)
(C3)
Note: Award (A2) for all correct heights of bars or (A1) for three or four correct heights of bars.
Award (A1) for rectangular bars all with correct left and right end points (100, 200, 300, 400, 500 and 600) and for no gaps; the bars do not have to be shaded.
Award at most (A2)(A0) if a ruler is not used for all lines.
4. (a) (i) $0=x+\frac{12}{x^{2}}$

Note: Award (M1) for equating the function to zero.

$$
\begin{equation*}
(x=)-2.29(-2.28942 \ldots) \tag{A1}
\end{equation*}
$$

(C2)

Note: Award (C1) for a correct x-value given as part of a coordinate pair or alongside an explicitly stated y-value.
(ii) $(2.88,4.33)((2.88449 \ldots, 4.32674 \ldots)) \quad$ (A1)(A1)

Note: Accept $x=2.88, y=4.33$.
(b) $3-x=x+\frac{12}{x^{2}}$ (or equivalent)

Note: Award (M1) for equating the functions or for a sketch of the two functions.

$$
\begin{equation*}
(x=)-1.43(-1.43080 \ldots) \tag{A1}
\end{equation*}
$$

Note: Do not award the final (A1) if the answer is seen as part of a coordinate pair or a y-value is explicitly stated, unless already penalized in part (a).
5. (a) 3400×0.855

Note: Award (M1) for multiplying 3400 by 0.855 .

2907 (EUR)
(A1)
(C2)

Note: Answer must be exact for the (A1) to be awarded.
(b) $\frac{2907-1473}{0.8494}$
(M1)

Note: Award (M1) for subtracting 1473 from their part (a) and dividing by 0.8494 .
1688.25 (USD)
(A1)(ft)
(C2)

Note: Answer must be written to the nearest cent to award the final (A1)(ft). Follow through from part (a).
(c) $\frac{1077}{31.104}$
(M1)

Note: Award (M1) for dividing 1077 by 31.104 .

$$
(x=) 34.6 \text { (EUR) (34.6257...(EUR)) }
$$

6.

(a) (i) $\frac{3}{9}\left(\frac{1}{3}, 0.333,0.333333 \ldots, 33.3 \%\right)$
(A1)
(ii) $\frac{5}{9}(0.556,0.555555 \ldots, 55.6 \%)$
(A1)
(C1)
[2 marks]
(b) $\frac{3}{8}(0.375,37.5 \%)$
(A1)(A1) (C2)

Note: Award (A1) for correct numerator, (A1) for correct denominator.
(c) $\frac{2}{9} \times \frac{1}{8}$
(M1)

Note: Award (M1) for a correct compound probability calculation seen.

$$
\frac{2}{72}\left(\frac{1}{36}, 0.0278,0.0277777 \ldots, 2.78 \%\right)
$$

7. (a) $24-8$ OR $24-(32-24) \quad$ OR $24=\frac{32+h}{2}$
(M1)

Note: Award (M1) for subtracting 8 from the median, or equivalent.
$16(\mathrm{~cm})$
(A1)
(C2)
[2 marks]
(b) $q-p=50$ (or equivalent)
(A1)
(C1) [1 mark]
(c) $\frac{p+16+32+q}{4}=27 \quad$ OR $\quad p+q=60 \quad$ (or equivalent)
(A1)(ft)

Note: Follow through from part (a).
(d) (i) $5(\mathrm{~cm})$
(A1)(ft)
(ii) $55(\mathrm{~cm})$
(A1)(ft)
(C2)
Note: Follow through from parts (b) and (c).
8. (a) $(F V=) 25000 \times\left(1+\frac{3.6}{100 \times 12}\right)^{12 \times 5}$

Note: Award (M1) for substituted compound interest formula, (A1) for correct substitutions.

OR

$$
\begin{aligned}
& N=5 \\
& I \%=3.6 \\
& P V=\mp 25000 \\
& P / Y=1 \\
& C / Y=12
\end{aligned}
$$

Note: Award (A1) for $C / Y=12$ seen, (M1) for all other correct entries.
OR

$$
\begin{aligned}
& N=60 \\
& I \%=3.6 \\
& P V=\mp 25000 \\
& P / Y=12 \\
& C / Y=12
\end{aligned}
$$

(A1)(M1)

Note: Award (A1) for $C / Y=12$ seen, (M1) for all other correct entries.

$$
\begin{equation*}
(F V=) 29922 \text { (SGD) } \tag{C3}
\end{equation*}
$$

(A1)
Note: Do not award the final (A1) if answer is not given correct to the nearest integer.
continued...

Question 8 continued
(b) $20000=P V \times\left(1+\frac{5.7}{100 \times 2}\right)^{2 \times 1.5}$
(M1)(A1)

Note: Award (M1) for substituted compound interest formula equated to 20000 . Award (A1) for correct substitutions.

OR

$$
\begin{aligned}
& N=1.5 \\
& I \%=5.7 \\
& F V= \pm 20000 \\
& P / Y=1 \\
& C / Y=2
\end{aligned}
$$

Note: Award (A1) for $C / Y=2$ seen, (M1) for all other correct entries.
OR
$N=3$
$I \%=5.7$
$F V= \pm 20000$
$P / Y=2$
$C / Y=2$
(A1)(M1)
Note: Award (A1) for $C / Y=2$ seen, (M1) for all other correct entries.
$(x=) 18383$ (SGD)
(A1)
(C3)
Note: Do not award the final (A1) if answer is not given correct to the nearest integer (unless already penalized in part(a)).
9. (a) I get the job is equivalent to I do not have experience
(A1)(A1)
(C2)
Note: Award (A1) for the two correct statements "I get the job" and "I do not have experience", (A1) for "equivalent to" separating the two statements.

OR
I get the job if and only if I do not have experience
(A1)(A1)
(C2)
Note: Award (A1) for the two correct statements "I get the job" and "I do not have experience", (A1) for "if and only if" or "iff" or "is equivalent to" separating the two statements.

OR
If I get the job, then I do not have experience and if I do not have experience, then I get the job.
(A1)(A1)
Note: Award (A1) for two correct "if-then" statements ("if" and "then" must be seen in both), (A1) for "and" between the two statements.
(b)

p	q	$\neg q$	$p \Leftrightarrow q$	$p \Leftrightarrow \neg q$	$(p \Leftrightarrow q) \wedge(p \Leftrightarrow \neg q)$
T	T	F	T	\mathbf{F}	\mathbf{F}
T	F	T	F	\mathbf{T}	\mathbf{F}
F	T	F	F	\mathbf{T}	\mathbf{F}
F	F	T	T	\mathbf{F}	\mathbf{F}

(A1)(A1)(ft)
Note: Award (A1) for each correct column. The final column follows through from the previous one.
[2 marks]
(c) (i) it is a contradiction
(A1)(ft)
Note: Follow through from part (b).
(ii) the truth values in the final column are all false
(A1)(ft)
Note: Follow through from part (c)(i). For the (A1) to be awarded the final column of the truth table must be referenced.
10. (a) type of journey and whether it rained are independent

Note: Accept "there is no association" or "not dependent". Do not accept "not related" or "not correlated". Accept equivalent terms for 'type of journey'.
[1 mark]
(b) $\frac{17}{90} \times \frac{40}{90} \times 90$ OR $\frac{17 \times 40}{90}$

(A1)(M1)

Note: Award (A1) for 17 or 40 seen. Award (M1) for $\frac{17}{90} \times \frac{40}{90} \times 90$ OR $\frac{17 \times 40}{90}$ seen.

$$
\begin{equation*}
7.56\left(7.55555 \ldots, \frac{68}{9}\right) \tag{A1}
\end{equation*}
$$

(c) reject (do not accept) H_{0}

OR
type of journey and whether it rained are not independent
Note: Follow through from part (a) for their phrasing of the null hypothesis.

$$
\begin{equation*}
0.0206<0.05 \tag{R1}
\end{equation*}
$$

Note: A comparison must be seen, either numerically or in words (e.g. p-value < significance level). Do not award (R0)(A1).
11. (a) $\quad(x=)(-2)-4 \mathbf{O R}(x=)(-2)-(2-(-2))$
(M1)

Note: Award (M1) for correct calculation of the left symmetrical point.

$$
\begin{equation*}
(x=)-6 \tag{A1}
\end{equation*}
$$

(b)

	positive	zero	negative
\boldsymbol{a}			\checkmark
b			\checkmark

(A1)(A1)
Note: Award (A1) for each correct row.
(c) $x>-2 \quad$ OR $\quad x \geq-2$
(A1)(A1)
(C2)

Note: Award (A1) for -2 seen as part of an inequality, (A1) for completely correct notation. Award (A1)(A1) for correct equivalent statement in words, for example "decreasing when x is greater than negative 2 ".
12. (a) $0=K-60\left(1.2^{0}\right)$

Note: Award (M1) for correctly substituted function equated to zero.
$(K=) 60$
(C2) [2 marks]
(b) the (vertical) speed that Jean-Pierre is approaching (as t increases)
$\mathbf{O R}$
the limit of the (vertical) speed of Jean-Pierre
(A1)
(C1)
(A1)
Note: Accept "maximum speed" or "terminal speed".
(c) $\quad(S=) 60-60\left(1.2^{-10}\right)$
(M1)

Note: Award (M1) for correctly substituted function.

$$
(S=) 50.3096 \ldots\left(\mathrm{~ms}^{-1}\right)
$$

(A1)(ft)

Note: Follow through from part (a).
$181\left(\mathrm{kmh}^{-1}\right)\left(181.114 \ldots\left(\mathrm{kmh}^{-1}\right)\right) \quad$ (A1)(ft)
(C3)

Note: Award the final (A1)(ft) for correct conversion of their speed to kmh^{-1}.
13. (a) $2 x+\frac{k}{x^{2}}$
(A1)(A1)(A1)

Note: Award (A1) for $2 x$, (A1) for $+k$, and (A1) for x^{-2} or $\frac{1}{x^{2}}$.
Award at most (A1)(A1)(A0) if additional terms are seen.
(b) $\quad-2.5\left(\frac{-5}{2}\right)$
(A1)
(C1)
(c) $-2.5=2 \times(-2)+\frac{k}{(-2)^{2}}$
(M1)
Note: Award (M1) for equating their gradient from part (b) to their substituted derivative from part (a).

$$
\begin{equation*}
(k=) 6 \tag{C2}
\end{equation*}
$$

(A1)(ft)

Note: Follow through from parts (a) and (b).
14. (a)

(A1)
(C1)

Note: Award (A1) for the correct pair of probabilities.
(b) $p \times 0.4+(1-p)=0.58$

Note: Award (M1) for multiplying and adding correct probabilities for losing equated to 0.58 .

OR

$$
\begin{equation*}
p \times 0.6=1-0.58 \tag{M1}
\end{equation*}
$$

Note: Award (M1) for multiplying correct probabilities for winning equated to $1-0.58$ or 0.42 .

$$
\begin{equation*}
(p=) 0.7 \tag{C2}
\end{equation*}
$$

(A1)(ft)

Note: Follow through from their part (a). Award the final (A1)(ft) only if their p is within the range $0<p<1$.
continued...

Question 14 continued
(c) $\frac{0.3}{0.58}\left(\frac{1-0.7}{0.58}\right)$
(A1)(ft)(A1)

Note: Award (A1)(ft) for their correct numerator. Follow through from part (b). Award (A1) for the correct denominator.

OR

$$
\frac{0.3}{0.3+0.7 \times 0.4}
$$

(A1)(ft)(A1)(ft)

Note: Award (A1)(ft) for their correct numerator. Follow through from part (b). Award (A1)(ft) for their correct calculation of Andre losing the semi-final or winning the semi-final and then losing in the final. Follow through from their parts (a) and (b).

$$
\frac{15}{29}(0.517,0.517241 \ldots, 51.7 \%)
$$

(A1)(ft)
(C3)

Note: Follow through from parts (a) and (b).
15. (a) $u_{1} r=30$ and $u_{1} r^{4}=240$,
(M1)

Note: Award (M1) for both the given terms expressed in the formula for u_{n}.

OR

$$
\begin{equation*}
30 r^{3}=240 \quad\left(r^{3}=8\right) \tag{M1}
\end{equation*}
$$

Note: Award (M1) for a correct equation seen.

$$
\begin{equation*}
(r=) 2 \tag{A1}
\end{equation*}
$$

(C2)
(b) $u_{1} \times 2=30$ OR $u_{1} \times 2^{4}=240$

Note: Award (M1) for their correct substitution in geometric sequence formula.

$$
\begin{equation*}
\left(u_{1}=\right) 15 \tag{C2}
\end{equation*}
$$

(A1)(ft)

Note: Follow through from part (a).
(c) $\frac{15\left(2^{n}-1\right)}{2-1}=61425$
(M1)

Note: Award (M1) for correctly substituted geometric series formula equated to 61425 .
($n=) 12$ (slices) \quad (A1)(ft)
Note: Follow through from parts (a) and (b).

